HIP

From Atariki

(Różnice między wersjami)
Jump to: navigation, search
Wersja z dnia 16:20, 2 sie 2010
KMK (Dyskusja | wkład)
(Techniczne informacje o HIP - nie pół cyklu koloru tylko pół piksela, moim zdaniem)
← Previous diff
Aktualna wersja
Mono (Dyskusja | wkład)
(linki i formatowanie)
Linia 5: Linia 5:
==Co to jest HIP ?== ==Co to jest HIP ?==
-HIP jest metodą wyświetlania obrazków na małym Atari. HIP to skrót od "HARD-Interlacing-Picture" i został wymyślony przez członków grupy [[HARD]] Software z Węgier w czerwcu 1996 r. Umożliwia on wyświetlenie obrazka w rozdzielczości 160 x 240 [[piksel]]i w 30 odcieniach, prawie bez żadnego migania (zależy to od konkretnego obrazka, którego używasz). "HARD" nie oznacza "ostrego" albo "wielkiego" migotania obrazu, lecz chodzi tu o nazwę grupy, która wymyśliła ten tryb.+HIP jest metodą wyświetlania obrazków na małym Atari. HIP to skrót od "HARD-Interlacing-Picture" i został wymyślony przez członków grupy [[HARD]] Software z Węgier w czerwcu 1996 r. Umożliwia on wyświetlenie obrazka w rozdzielczości 160×240 [[piksel]]i w 30 odcieniach, prawie bez żadnego migania (zależy to od konkretnego obrazka, którego używasz). "HARD" nie oznacza "ostrego" albo "wielkiego" migotania obrazu, lecz chodzi tu o nazwę grupy, która wymyśliła ten tryb.
==Historia HIPa według [[Heaven]]a/[[Taquart]]== ==Historia HIPa według [[Heaven]]a/[[Taquart]]==
-Tamas Bene i ja prowadziliśmy "konwersacje internetowe" przez ostatnie kilka miesięcy i rozmawialiśmy o starszych demach i efektach w nich używanych. W pewnym momencie zaczęliśmy rozmawiać o demie "Visdom II" JAComo Leopardiego, gdzie JAC zdołał wyświetlić 16 kolorów/odcieni w rozdzielczości [[Graphics 15]], która oznaczała 160 x 200 pikseli. Rozmawialiśmy także o demie [[UNITY]], gdzie grupa [[Our 5oft]] przełączała trzy tryby graficzne w jednej linii ekranowej: [[Graphics 8]], [[Graphics 9]] i coś podobnego do Graphics 15, wykorzystując do tego zmienianie rejestru [[GPRIOR]] ($d01b) w przerwaniu DLI.+Tamás Bene i ja prowadziliśmy "konwersacje internetowe" przez ostatnie kilka miesięcy i rozmawialiśmy o starszych demach i efektach w nich używanych. W pewnym momencie zaczęliśmy rozmawiać o demie "Visdom II" JAComo Leopardiego, gdzie JAC zdołał wyświetlić 16 kolorów/odcieni w rozdzielczości [[Graphics 15]], która oznaczała 160×200 pikseli. Rozmawialiśmy także o demie [[UNITY]], gdzie grupa [[Our 5oft]] przełączała trzy tryby graficzne w jednej linii ekranowej: [[Graphics 8]], [[Graphics 9]] i coś podobnego do Graphics 15, wykorzystując do tego zmienianie rejestru [[Rejestry GTIA#GTIACTL|GPRIOR]] ($D01B) w przerwaniu DLI.
-Jak myślisz, co się stanie, jeśli wpiszesz #$00 w ten rejestr ($d01b) na początku wyświetlania linii ekranowej, odczekasz trochę czasu (procesora). przełączysz wyświetlanie na Graphics 9 przez wpisanie #$40 do GPRIOR i po krótkiej chwili, w 1/3 ostatniej części tejże samej linii ekranowej przywrócisz z powrotem tryb 8, wpisując do GPRIOR ponownie wartość #$00??? Co pokaże [[GTIA]]? Nie, nie grafikę 8 (lub [[Graphics 0]]) jak normalnie - GTIA wyświetli coś podobnego do trybu 15!!!+Jak myślisz, co się stanie, jeśli wpiszesz #$00 w ten rejestr (GPRIOR) na początku wyświetlania linii ekranowej, odczekasz trochę czasu (procesora). przełączysz wyświetlanie na Graphics 9 przez wpisanie #$40 do GPRIOR i po krótkiej chwili, w 1/3 ostatniej części tejże samej linii ekranowej przywrócisz z powrotem tryb 8, wpisując do GPRIOR ponownie wartość #$00??? Co pokaże [[GTIA]]? Nie, nie grafikę 8 (lub [[Graphics 0]]) jak normalnie - GTIA wyświetli coś podobnego do trybu 15!!!
-Tamas opowiedział mi trochę historii o sesjach kodowania do dema [[Joyride]], w których brał udział ostatniego lata (1995) i stwierdził, że razem z resztą HARD'u odkryli jeszcze jakiś dodatkowy błąd w procedurze plazmy, lecz on dokończył ten efekt i zapomniał o wykrytym błędzie, aż do naszej rozmowy o błędach układu GTIA.+Tamás opowiedział mi trochę historii o sesjach kodowania do dema [[Joyride]], w których brał udział ostatniego lata (1995) i stwierdził, że razem z resztą HARD'u odkryli jeszcze jakiś dodatkowy błąd w procedurze plazmy, lecz on dokończył ten efekt i zapomniał o wykrytym błędzie, aż do naszej rozmowy o błędach układu GTIA.
-Tak więc zaczęliśmy teraz rozmawiać o znanych błędach w GTIA. Następnego dnia Tamas był zdenerwowany, gdyż stwierdził, że odkrył nowy "bug" i odtworzył stary błąd w plaźmie z "Joyride". Odkrył on, że niektóre linie ekranowe ("scanlines") były przesunięte o pół(!) piksela trybu 9, gdy zaczynał się scroller i oni (HARD) nie poprawili tego błędu w plaźmie. Jednak po odtworzeniu tego błędu Tamas przekonał się, iż powodem błędu nie był scroller. Błąd tkwił w specjalnej procedurze [[ANTIC Display List|Display-Listy]].+Tak więc zaczęliśmy teraz rozmawiać o znanych błędach w GTIA. Następnego dnia Tamás był zdenerwowany, gdyż stwierdził, że odkrył nowy "bug" i odtworzył stary błąd w plaźmie z "Joyride". Odkrył on, że niektóre linie ekranowe ("scanlines") były przesunięte o pół(!) piksela trybu 9, gdy zaczynał się scroller i oni (HARD) nie poprawili tego błędu w plaźmie. Jednak po odtworzeniu tego błędu Tamás przekonał się, iż powodem błędu nie był scroller. Błąd tkwił w specjalnej procedurze [[ANTIC Display List|Display-Listy]].
==Techniczne informacje o HIP== ==Techniczne informacje o HIP==
-Podstawowym założeniem jest, że wszystkie linie trybu [[Graphics 10]] są przesunięte o połowę piksela (albo o tzw. [[cykl koloru]]) w prawo w stosunku do pikseli trybu 9. Nikt jednak nawet nie próbował połączyć trybu 9 z 10. Wszyscy łączyli tryb 9 (16 odcieni) z trybem 11 (16 kolorów), aby wyświetlić 256 różnych kolorów (tak jak to widać w np. "APACview"). Lecz wtedy rozdzielczość wynosiła wciąż 80x200 pikseli.+Podstawowym założeniem jest, że wszystkie linie trybu [[Graphics 10]] są przesunięte o połowę piksela (albo o tzw. [[cykl koloru]]) w prawo w stosunku do pikseli trybu 9. Nikt jednak nawet nie próbował połączyć trybu 9 z 10. Wszyscy łączyli tryb 9 (16 odcieni) z trybem 11 (16 kolorów), aby wyświetlić 256 różnych kolorów (tak jak to widać w np. [[APAC View]]). Lecz wtedy rozdzielczość wynosiła wciąż 80×200 pikseli.
Tutaj znajduje się wytłumaczenie podstawowego pomysłu. Tutaj znajduje się wytłumaczenie podstawowego pomysłu.
Linia 47: Linia 47:
Ale w trybie 10 możliwe jest wybranie każdego z rejestrów kolorów (704-712), więc w procedurze wyświetlania obrazu w HIP, jak i w procedurze DLI, rejestry muszą być ustawione w prawidłowy sposób! Ale w trybie 10 możliwe jest wybranie każdego z rejestrów kolorów (704-712), więc w procedurze wyświetlania obrazu w HIP, jak i w procedurze DLI, rejestry muszą być ustawione w prawidłowy sposób!
-Dlatego, jeśli patrzysz w powyższą tabelę, zauważ, że tamte liczby oznaczają wartości jasności w Atari! Na przykład jeśli chcemy wyświetlić kolor HIP o wartości 6.5, musimy wtedy ustawić linii trybu graficznego 9 wartość 7 (w Basicu przez komendy: color 7, plot x,y). Natomiast dla linii trybu 10 jest wartość 6, ale byłoby niewłaściwie ustawiać piksel kolorem 6, ponieważ mamy właśnie 8 rejestrów koloru w trybie 10. Co powiecie na ustawienie rejestrów koloru w następujący sposób:+Dlatego, jeśli patrzysz w powyższą tabelę, zauważ, że tamte liczby oznaczają wartości jasności w Atari! Na przykład jeśli chcemy wyświetlić kolor HIP o wartości 6.5, musimy wtedy ustawić linii trybu graficznego 9 wartość 7 (w Basicu przez komendy: <code>COLOR 7</code>, <code>PLOT x,y</code>). Natomiast dla linii trybu 10 jest wartość 6, ale byłoby niewłaściwie ustawiać piksel kolorem 6, ponieważ mamy właśnie 8 rejestrów koloru w trybie 10. Co powiecie na ustawienie rejestrów koloru w następujący sposób:
704 = 0 704 = 0
Linia 135: Linia 135:
Są one dostępne dla następujących systemów: Są one dostępne dla następujących systemów:
-*Unix - kodowany przez Tamasa Bene z HARD+*Unix - kodowany przez Tamása Benego z HARD
-*PC - kodowany przez Tamasa Bene z HARD+*PC - kodowany przez Tamása Benego z HARD
*Amiga - kodowany i przerobiony przez [[Heaven]]a/[[Taquart]] *Amiga - kodowany i przerobiony przez [[Heaven]]a/[[Taquart]]
*XL - moje algorytmy, napisane przez Heavena/Taquart *XL - moje algorytmy, napisane przez Heavena/Taquart
Linia 143: Linia 143:
*jeden z powyższych konwerterów *jeden z powyższych konwerterów
-*program graficzny, w którym można tworzyć obrazki w PRAWDZIWEJ skali szarości i 64 kolorach, w rozdzielczości 320x200 pikseli (myślę, że nowa wersja konwertera "bmp2hip" na PC będzie mogła 'obrabiać' większe rozdzielczości i więcej kolorów).+*program graficzny, w którym można tworzyć obrazki w PRAWDZIWEJ skali szarości i 64 kolorach, w rozdzielczości 320&times;200 pikseli (myślę, że nowa wersja konwertera "bmp2hip" na PC będzie mogła 'obrabiać' większe rozdzielczości i więcej kolorów).
-*obrazek 320x200x64 musi być zapisany w formacie Windows-BMP+*obrazek 320&times;200&times;64 musi być zapisany w formacie Windows-BMP
*program przenoszący dane na [[XL]]/[[XE]] *program przenoszący dane na [[XL]]/[[XE]]
*procedurę wyświetlającą tryb HIP na XL *procedurę wyświetlającą tryb HIP na XL
Linia 151: Linia 151:
CrEdItS: CrEdItS:
- tekst: Heaven - tekst: Heaven
-- algorytmy: Sanyi i Tamas z HARD Soft+- algorytmy: Sanyi i Tamás z HARD Soft
-- procedura wyświetlania trybu HIP: Tamas z HARD Soft+- procedura wyświetlania trybu HIP: Tamás z HARD Soft
- inspiracja: JAC! - inspiracja: JAC!
- tłumaczenie z angielskiego wraz z dostosowaniem tekstu do EED: Dracon of TQA - tłumaczenie z angielskiego wraz z dostosowaniem tekstu do EED: Dracon of TQA
Linia 159: Linia 159:
[[Kategoria:Atari 8-bit]] [[Kategoria:Atari 8-bit]]
[[Kategoria:Formaty plików]] [[Kategoria:Formaty plików]]
 +[[Kategoria: Tryby graficzne]]

Aktualna wersja

przykładowy obrazek w trybie HIP


Spis treści

Co to jest HIP ?

HIP jest metodą wyświetlania obrazków na małym Atari. HIP to skrót od "HARD-Interlacing-Picture" i został wymyślony przez członków grupy HARD Software z Węgier w czerwcu 1996 r. Umożliwia on wyświetlenie obrazka w rozdzielczości 160×240 pikseli w 30 odcieniach, prawie bez żadnego migania (zależy to od konkretnego obrazka, którego używasz). "HARD" nie oznacza "ostrego" albo "wielkiego" migotania obrazu, lecz chodzi tu o nazwę grupy, która wymyśliła ten tryb.

Historia HIPa według Heavena/Taquart

Tamás Bene i ja prowadziliśmy "konwersacje internetowe" przez ostatnie kilka miesięcy i rozmawialiśmy o starszych demach i efektach w nich używanych. W pewnym momencie zaczęliśmy rozmawiać o demie "Visdom II" JAComo Leopardiego, gdzie JAC zdołał wyświetlić 16 kolorów/odcieni w rozdzielczości Graphics 15, która oznaczała 160×200 pikseli. Rozmawialiśmy także o demie UNITY, gdzie grupa Our 5oft przełączała trzy tryby graficzne w jednej linii ekranowej: Graphics 8, Graphics 9 i coś podobnego do Graphics 15, wykorzystując do tego zmienianie rejestru GPRIOR ($D01B) w przerwaniu DLI.

Jak myślisz, co się stanie, jeśli wpiszesz #$00 w ten rejestr (GPRIOR) na początku wyświetlania linii ekranowej, odczekasz trochę czasu (procesora). przełączysz wyświetlanie na Graphics 9 przez wpisanie #$40 do GPRIOR i po krótkiej chwili, w 1/3 ostatniej części tejże samej linii ekranowej przywrócisz z powrotem tryb 8, wpisując do GPRIOR ponownie wartość #$00??? Co pokaże GTIA? Nie, nie grafikę 8 (lub Graphics 0) jak normalnie - GTIA wyświetli coś podobnego do trybu 15!!!

Tamás opowiedział mi trochę historii o sesjach kodowania do dema Joyride, w których brał udział ostatniego lata (1995) i stwierdził, że razem z resztą HARD'u odkryli jeszcze jakiś dodatkowy błąd w procedurze plazmy, lecz on dokończył ten efekt i zapomniał o wykrytym błędzie, aż do naszej rozmowy o błędach układu GTIA.

Tak więc zaczęliśmy teraz rozmawiać o znanych błędach w GTIA. Następnego dnia Tamás był zdenerwowany, gdyż stwierdził, że odkrył nowy "bug" i odtworzył stary błąd w plaźmie z "Joyride". Odkrył on, że niektóre linie ekranowe ("scanlines") były przesunięte o pół(!) piksela trybu 9, gdy zaczynał się scroller i oni (HARD) nie poprawili tego błędu w plaźmie. Jednak po odtworzeniu tego błędu Tamás przekonał się, iż powodem błędu nie był scroller. Błąd tkwił w specjalnej procedurze Display-Listy.

Techniczne informacje o HIP

Podstawowym założeniem jest, że wszystkie linie trybu Graphics 10 są przesunięte o połowę piksela (albo o tzw. cykl koloru) w prawo w stosunku do pikseli trybu 9. Nikt jednak nawet nie próbował połączyć trybu 9 z 10. Wszyscy łączyli tryb 9 (16 odcieni) z trybem 11 (16 kolorów), aby wyświetlić 256 różnych kolorów (tak jak to widać w np. APAC View). Lecz wtedy rozdzielczość wynosiła wciąż 80×200 pikseli.

Tutaj znajduje się wytłumaczenie podstawowego pomysłu.

Oto kombinacje, które są potrzebne do łączenia linii trybu grafiki 9 z 10, w celu wyświetlenia pożądanego koloru HIP:

GR10: 000 000 000 222 222 222 222 444 444
GR09: 000 111 222 111 222 333 444 333 444
HIP : 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

GR10: 444 444 666 666 666 666 888 888 888
GR09: 555 666 555 666 777 888 777 888 999
HIP : 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

GR10: 888 aaa aaa aaa aaa ccc ccc ccc ccc
GR09: aaa 999 aaa bbb ccc bbb ccc ddd eee
HIP : 9.0 9.5 a.0 a.5 b.0 b.5 c.0 c.5 d.0

GR10: eee eee eee
GR09: ddd eee fff
HIP : d.5 e.0 e.5

OK. Tutaj istnieje 30 możliwości odcieni. Nasze oczy "uśredniają" dwie wartości jasności dzięki wzajemnym przełączaniu dwóch linii (w trybach 9 i 10) podczas każdego przerwania VBI. Dlatego troszkę to miga.

Ale w trybie 10 możliwe jest wybranie każdego z rejestrów kolorów (704-712), więc w procedurze wyświetlania obrazu w HIP, jak i w procedurze DLI, rejestry muszą być ustawione w prawidłowy sposób!

Dlatego, jeśli patrzysz w powyższą tabelę, zauważ, że tamte liczby oznaczają wartości jasności w Atari! Na przykład jeśli chcemy wyświetlić kolor HIP o wartości 6.5, musimy wtedy ustawić linii trybu graficznego 9 wartość 7 (w Basicu przez komendy: COLOR 7, PLOT x,y). Natomiast dla linii trybu 10 jest wartość 6, ale byłoby niewłaściwie ustawiać piksel kolorem 6, ponieważ mamy właśnie 8 rejestrów koloru w trybie 10. Co powiecie na ustawienie rejestrów koloru w następujący sposób:

704 = 0
705 = 0
706 = 2
707 = 4
708 = 6
709 = 8
710 = 10
711 = 12
712 = 14

Jeśli chcemy jasność 6, musimy ustawić piksel kolorem 4: plot x,y! W Graphics 10 wartość piksela wybiera rejestr koloru! Pusty/czarny piksel nie jest ustawiany kolorem 0!

Kolor 0 "każe" GTIA postawić piksel z kolorze, który jest zdefiniowany przez rejestr koloru 704!!! Jeżeli więc wstawisz 0 do rejestru 704, będzie tam widoczny czarny piksel.

W trybie 9 nie możemy wstawić 14 do rejestru 712, ponieważ tu rejestr 712 definiuje podstawowy kolor. Dlatego jeśli chcemy 30 odcieni szarości, musimy wstawić tam wartość 0, lecz wtedy w trybie 10 musi być 14 w tym rejestrze.

Rozwiązaniem jest specjalne przerwanie DLI i Display Lista.

 1. vbi 2. vbi

 DList1  DList2

 gr9 (0) gr10(0) dli-bit ustawiony
 gr10(1) gr9 (1)
 gr9 (2) gr10(2) dli-bit ustawiony
 gr10(3) gr9 (3)
 gr9 (4) gr10(4) dli-bit ustawiony
 ...     ...

(x) jest numerem linii ekranowej w każdej (z dwóch) pamięci obrazu.

Gdy zapętlimy to, to stworzymy interlace pomiędzy tymi dwoma pamięciami ekranowymi (w trybach 9 i 10) i zrobimy tym sposobem tryb HIP; lecz musimy ustawić prawidłowe wartości w rejestrze COLBAK $d01a (712, zobacz powyżej).

1. vbi       2. vbi

DLI1          DLI2

pha           pha
lda #$40      lda #$80 ; przełączenie na
                       ; odpow. tryb Graphics
                       ; (Graphics #9, Graphics #10)
sta wsync     sta wsync
sta gtiamode  sta gtiamode
lda #0        lda #14
                       ; ustawienie odpow.
                       ; koloru tła
sta $d01a     sta $d01a
lda #$80      lda #$40 ; przełączenie na
                       ; kolejny tryb Graphics
                       ; (zobacz DispList)

sta wsync     sta wsync
sta gtiamode  sta gtiamode
lda #14       lda #0
                       ; i nie zapomnij o
                       ; kolorze tła !
sta d01a      sta $d01a
pla           pla
rti           rti

To jest technika, lecz jest "duży" problem z konwertowaniem obrazków. W trybie 9/10 każdy piksel jest wielki na 4 "bity" lub tzw. "nibble", a piksel w HIP ma 2 "bity" (nakładane na siebie bity).

Tutaj jest przykład:

gr.10: ..00002222...
gr.9 :   000022224444...
HIP  : ..00112233..

Pamiętaj: GTIA przesuwa linie trybu 10 o pół piksla w trybie 9/10!

Tak więc będziemy zawsze sprawdzać jedną połówkę wartości piksela aż do kolejnego piksela w trybie HIP. I to jest trudność, bo kolorów w HIP nie można ustawiać oddzielnie. Istnieją ograniczenia takie, jak to główne:

  • dwa następujące po sobie piksele w HIP nie powinny mieć różnicy między ich jasnością większej od 2, ponieważ wtedy nie moglibyśmy ustawić prawidłowych wartości i piksel w HIP zacznie migać.

Najlepszą metodą (używania trybu HIP) jest wykorzystywanie jako źródła digitalizowanych obrazków z 'wygładzoną' jasnością do konwersji na format HIP, albo przekonwertowanie jakiś raytrace'owanych obrazków.

Spróbuj zakodować odpowiedni algorytm optymalizacji dla konwersji na HIP.

Konwertery

Są one dostępne dla następujących systemów:

  • Unix - kodowany przez Tamása Benego z HARD
  • PC - kodowany przez Tamása Benego z HARD
  • Amiga - kodowany i przerobiony przez Heavena/Taquart
  • XL - moje algorytmy, napisane przez Heavena/Taquart

Do konwertowania potrzebujesz:

  • jeden z powyższych konwerterów
  • program graficzny, w którym można tworzyć obrazki w PRAWDZIWEJ skali szarości i 64 kolorach, w rozdzielczości 320×200 pikseli (myślę, że nowa wersja konwertera "bmp2hip" na PC będzie mogła 'obrabiać' większe rozdzielczości i więcej kolorów).
  • obrazek 320×200×64 musi być zapisany w formacie Windows-BMP
  • program przenoszący dane na XL/XE
  • procedurę wyświetlającą tryb HIP na XL
CrEdItS:
- tekst: Heaven
- algorytmy: Sanyi i Tamás z HARD Soft
- procedura wyświetlania trybu HIP: Tamás z HARD Soft
- inspiracja: JAC!
- tłumaczenie z angielskiego wraz z dostosowaniem tekstu do EED: Dracon of TQA
Personal tools